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Abstract
Small and medium enterprises (SMEs) may not have the maturity to put forward and unfold all the benefits from an ERP
based system, a vital tool for production planning. Manufacturing ubiquitous trends, however, are more approachable to
SMEs, and even the more affordable tools could be of great advantage. In this paper we propose an algorithmic framework
that uses process mining tools to extract the underlying industrial process via Petri nets, and then retrieve all product tree
necessary information to perform the multi-level scheduling. A faster solution decoding is proposed, for algorithms that uses
random-keys. Computational experiments show that the new decoding is faster than the usual, leading to promising new paths
on its future uses.
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Introduction

In order to achieve both client expectations and cost effi-
ciency, a well designed production planning and control
requires to have the right part, at the right quantity at the right
time, with the lowest possible cost (Öztürk and Ornek 2014).
The core activity of planning and controlling production is
the scheduling. Scheduling algorithms are responsible for
determining the allocation of resources to tasks over a time
period, while minimizing one or more objective functions
(Pinedo 2012).

A special case of scheduling relates to multi-level prod-
ucts, where the sequencing of tasks should follow a product
tree (dependency graph) order; some sub-parts depends
directly of others to be produced (Öztürk and Ornek 2014).
Na and Park (2014) points out that there are little studies
concerned with the multi-level scheduling, and the ones that
exists are of little practicality, since they need to make many
assumptions in order to solve the problem. The scheduling
of sub-parts, as a short-term production plan, usually follows
from amid-termplan executed by theMRP (material require-
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ments planning), which estimate all material needed for the
plannings (Na and Park 2014).

The problem with MRP technology systems is that their
implementation is not a trivial task, requiring capital invested
and commitment, and once installed, can be extremely rigid
(Cullinan et al. 2010). Small andmedium enterprises (SMEs)
may not have the maturity to put forward and unfold all the
benefits from an ERP based system. This process results in
low success rates of implementation (Petroni 2002).

Since scheduling functionalities are closely related to
information systems (such as ERP or even the MRP), it
becomes a challenge for SMEs to achieve efficient planning
and control activities in their production floor, unveiling a gap
from this companies regarding a more ready to use frame-
work. This solution would need to enable reliable scheduling
optimization that are not necessarily intertwinedwith a robust
information system and database. This framework is now a
possibility, with the emerge of industry 4.0.

The concept of industry 4.0 is complex to define, andmany
definitions arise in literature ((Trappey et al. 2017), (Schu-
macher et al. 2016)). In all definitions, however, the Industry
4.0 concept is based on new technologies, such as internet of
things (IoT), cloud computing, cyber-physical systems and
big data. In the production floor, this data flow is put forward
through intelligent monitoring; machines are connected as a
collaborative community (Lee et al. 2014), providing man-
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agers the possibility of using on-line data in order to make
more accurate decisions.

Despite the fact that implementing the tools of industry 4.0
may also require large investments (as MRP-based systems),
they are more flexible, in a sense that it decentralizes infor-
mation and decision-making (Moeuf et al. 2018), becoming
more accessible to SMEs. Even the more affordable tools of
industry 4.0 are reported to generate great benefits for SMEs.
The use of these tools to collect machine data alone, however,
do not constitute intelligent manufacturing. A powerful way
of dealing with this new machine-based data logs is through
process mining techniques, that are able to summarize and
gather information about the underneath process (see (Thiede
et al. 2018) and (dos Santos et al. 2019) for recent reviews
on how companies are using process mining to improve their
processes).

The main concern in process mining is the discovery of
processes based on event logs (e.g., performing activities or
exchanging recorded messages) (Van Der Aalst 2016). With
this information, discovery algorithms are executed to extract
a process model from the data. The model can be mined and
output on several different languages, like Petri nets (Sun
et al. 2019) or even BPMN (Kalenkova et al. 2019). Follow-
ing the ubiquitous manufacturing trend (Wang et al. 2018),
process mining presents itself as a perfect layer between the
production floor, the information system and the end user, in
order to achieve machine intelligence.

In this paper, we thus propose a framework that uses the
information generated bymachines in the form of event logs,
extracts the underlying process to a Petri net, and from the
net and the data log reconstruct the product tree (dependency
graph). This extraction provides all necessary information to
perform the scheduling of products, in amulti-level structure.
We also propose a method that uses the machinery logs to
collect 3 values for each machine processing time, in a way
that the stochastic behavior of the production is accounted
for, in the form of different scheduling scenarios; optimistic,
realistic and pessimistic. In order to perform 3 different sce-
narios for each scheduling, the optimization engine should
be fast enough to handle the task. For this, we propose an
acceleration method to decode scheduling solutions that are
based on random keys, a common codification for the major-
ity of genetic algorithms implementations. Themethod is laid
upon two new bounds extracted from the product tree, and
a binary search. The new procedure reduces the complexity
of the classic random keys decoding process from O(n) to
O(log n).

With this new framework, we are bridging machine intel-
ligence and optimization through the use of process mining
techniques. This would enable to structure a production plan-
ning and control for SMEs, even without the use of major
ERP orMRP-based systems, using the already collected data
from machines.

The main contributions of this paper are as follow:

1. A new algorithm that extracts multi-level product tree
(dependency graph) from Petri nets, and the necessary
quantities of each product.

2. Creation of scheduling scenarios based on 3 different val-
ues, extracted from the machinery logs by confidence
intervals.

3. New decoding bounds for random keys, based on the
multi-level product structure, and an accelerated method
to decode the solutions, using the bounds and a bisection
method.

The reminder of the paper is organized as follows: in “Lit-
erature review” section we provide some basic concepts of
process mining, as well as some related works conducted on
multi-level product structures and the use of random keys
for scheduling. In “Proposed framework” section we explain
in details all components and algorithms of our approach,
and how it relates to the industrial environment and machine
intelligence. On “Computational results” sectionwe describe
computational results obtained by applying the newproposed
bisection decoding, using a genetic algorithm as the meta-
heuristic. Finally, in “Conclusion” section we conclude the
paper with some remarks, limitations and future works.

Literature review

In the first part of this Section we describe some basic con-
cepts and terminology of process mining. On the second part
we expose previous work on multi-level scheduling, and the
use of random keys for coding solutions.

Process mining premises

More and more information systems support manufacturing
processes. This generates a large amount of raw process data
recorded daily and stored in huge databases. Nevertheless,
organizations are still unable to extract complete information
from thedata (?). If the database records store the executionof
process instances (logs), the use of processmining techniques
are a viable option to perform knowledge extraction. The
main goal of process mining is to extract process related
information (e.g, automatically discover a process model)
from event data. The first step on the discovery is to mine a
process model. Once the model is at hand, it is possible to
replay occurred events to check conformance and uncover
bottlenecks (De Leoni et al. 2016).

In process mining terminology, an event is character-
ized by various properties, e.g., an event has a timestamp,
a resource identifying the executor, associated costs, and so
on. Each event must be associated with a case. When all
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the events of a case are in chronological order, we have
a trace (a finite non-empty sequence of events, such that
each event appears only once and time is non-decreasing).
Note that it is possible to have various cases that follows a
same trace, but each case is different. An event-log is a set of
traces. In theory, any process that has a time dimension could
be stored as an event-log database, including manufacturing
activities. All manufacturing activities performed on a giv-
ing product can be stored on a PO (production order), which
held both needed resources (machinery, raw material quanti-
ties, time consumed) and their execution times. Considering
that, hereafter we use the terms activities andmachines inter-
changeably.

Process mining techniques are not yet wide spread among
manufacturing researchers and practitioners, although that is
bound to change with industry 4.0 and new machine intel-
ligent designed methods. Myers et al. (2018) uses process
mining to prevent cyber attacks in industrial systems, by
analyzing anomalous log patterns, the authors use data min-
ing and conformance checking. Bruntsch and Tseng (2016)
models statistical process control, as a responsive toll using
process mining. Ruschel et al. (2018) has integrated process-
mining and Bayesian networks in order to find maintenance
intervals, Choueiri et al. (2020) uses a hybridmodel to predict
remaining time (cycle-time), optimized by linear program-
ming weights.

Multi-product scheduling and random keys

A scheduling optimization deals with the allocation of
resources to tasks over a time period. A number of variants
exists, regarding machine environment, process character-
istics and different constraints (Pinedo 2012). The multi-
product scheduling has the precedence constraints on its tasks
(the product tree, or bill ofmaterial);meaning that, for a given
node Np (task) to be feasibly allocated to start at a given time
period sp, all of its child nodes Ni (if they exist) must be allo-
cated, such that their ending times ei repects ei ≤ sp∀i ∈ Ni .
Some common problem characteristics for the multi-product
scheduling are as follows:

1. Except for end items, subassemblies and component items
(non-end items) have successors (or parents) in the prod-
uct tree. Component items have no predecessors.

2. There may exist independent demand for all items on the
tree.

3. A manufacturing order for an item can be realized on any
resource from the set of eligible resource pool of that item.

4. A resource can be shared by items of different levels.

Na and Park (2014) commented that only a few of previ-
ous studies has focused on these problems. To the best of our
knowledge, the first study that has dealt with this problem is

the work of Kim and Kim (1996). The authors considered a
multi-level structure where only two operations are allowed,
assembly and machinery. In this way, the two operations
can be viewed as only two different machines available. The
problem is optimized using two meta-heuristics; simulated
annealing (SA) and a genetic algorithm (GA). The authors
have used random keys as a coding scheme for the solutions
space.

It seems to be a tonic to tackle these problems with meta-
heuristic approaches. Pongcharoen et al. (2002) has devised a
design of experiments framework to optimize the GA param-
eters. They reported that the fine tune of the parameters was
crucial for the success of the algorithm.TheGAdeveloped by
Chen and Ji (2007a) has shown good results, the authors have
used the same design of experiments of Pongcharoen et al.
(2002) to optimize the parameter set. They have also used the
random key codification scheme, and compared their results
with a mixed integer programming (MIP) model formulation
(Chen and Ji 2007b). Dayou et al. (2009) have developed
a multi-objective MIP based on the model of Chen and Ji
(2007b). The authors also devise a GA to solve the problem.

Mohammadi et al. (2010) has provided a mathematical
model, and a relax and fix heuristic for the multi-product
multi-level capacitated lotsizing problem with sequence-
dependent setups. The authors developed two lower bounds,
and compare their MIP-based heuristic against the optimal
solution. Stadtler (2011) has developed a compact MIP-
model for the same problem, except that there were no
lead-times on the products. Karimi-Nasab and Seyedhoseini
(2013) had augmented the model, in order to incorporate
flexible machines with changing speeds. Yan et al. (2016)
solve the multi-level capacitated lot-sizing and scheduling
problem using particle swarm optimization.

The work of Chen et al. (2011) is the first, to our knowl-
edge, to conduct a case study for the multi-level product
scheduling encountered in a light source manufacturer. They
have developed a GA, using random keys as a codification
scheme. The steps of the GA are mainly based on previ-
ous approaches. More recently, Puongyeam et al. (2014)
designed a Krill Heard (KH) based algorithm to solve the
scheduling problem, the authors have also used real data
to validate their approach, from the capital goods industry.
Results showed that their algorithm had a better performance
than other KH based methods. A mathematical model is pro-
posed by Öztürk and Ornek (2014) for the basic problem,
and then the authors provide an extension that incorpo-
rate sequence dependent setups, and transfer time between
machines. The first author to propose a mathematical model
for themulti-level scheduling integrated with preventive pro-
duction maintenance is Chansombat et al. (2019).

Due to the high complexity of the scheduling problems,
the majority of papers leans toward meta-heuristic methods,
like GA and SA. For those algorithms to work properly,
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the coding scheme is a crucial decision in the design of
the method. An extensive review of coding schemes is pre-
sented by Cheng et al. (1996), although they are not bounded
to scheduling problems, there are a variety of production
problems that support RK implementation, (Hosseini and Al
Khaled 2014) and (Hosseini et al. 2014)) for example. We
believe that random-keys portrays a powerful way for repre-
senting multi-product scheduling solutions, but not yet well
explored.

We have conducted a search on the “Web of Science”
database, using the words “random key” and “scheduling”,
considering only journal published papers, from 1945 on.
The query returned 38 papers, after removing 5 that did not
addressed explicitly scheduling, the sample dropped to 33
papers. The papers histogram by year, and the percentage of
used algorithms are showed in Figs. 1a and 1b, respectively.

The histogram suggests that researchersworkingwith ran-
dom keys on their papers are increasing, and the majority of
them use the coding along with genetic algorithms. Only 3 of
those papers, however, handles themulti-product scheduling.
We believe that there is a lack of application of random keys
in those problems, due to the decoding complexity, which
could affect the overall efficiency of the algorithms.

We thus propose a method to speed-up the decoding of
random key, based on two new bounds extracted from the
multi-product tree structure.

Proposed framework

In this Section we present the steps through which our
approach is constructed. The main idea behind this algorith-
mic framework is to serve as a layer for knowledge extraction
and decision making; bridging the complex machine envi-
ronment and the decision maker. This layer is built based
on process mining techniques. A great advantage of process
mining is its ability to prompt and readily capture and extract
machine related data, and with their discovery algorithms,
mine machine dependencies.

Our method provides a framework that extract all rele-
vant multi-product scheduling information, based on event
logs only. That would enable a quicker response for decision
makers, in front of several productions setbacks; inopera-
tive machines, abnormal rates of discarded parts, or even the
stochastic behavior of manufacturing environments.

Figure 2 presents the main phases of the approach and
how they relate to the information system and the production
environment:

First, product information is gathered by machines in a
collaborative way and sent to the factory information sys-
tem. The data is then held in the form of event logs. These
logs constitute the raw input element through which process
mining techniques are able to unveil processes. The products

demand serves as a direction to perform the log filtering: for
each scheduling demanded product, there should be a data
base filtering specific events of the product. Each one of these
database segments should be individually input to the process
mining algorithm.

A discovery algorithm is used to extract a Petri net that
represent the production process, the seminal α-algorithm
(Van der Aalst et al. 2004), for example. For each different
product (for each database input) there should be a different
Petri net. In Fig. 2 this is represented as the “ProcessMining”
arrow.

After the Petri net extraction, we use them as input to the
discovery of the product-tree structures (also referred to as
precedence, or dependency graph), represented as I in the
Fig. 2. This first part only gathers the permissible machines
and their dependencies. Phase II is responsible for determin-
ing what are the parts and sub-parts of each node of the tree,
and also their respective quantities. The final information of
the product trees regards their processing times; in this phase
(III), we cope with the stochastic behavior of the process
by collecting 3 different processing times for each machine,
which will enable the different scheduling scenarios evalua-
tion.

From here on, any scheduling engine (heuristic or math-
ematical program) that are able to cope with multi-level
product could be used. We propose an improvement of a
scheduling heuristic based on random keys, by extracting
new lower and upper bounds for the solution decoding pro-
cess, and a bisection method that reduces the complexity of
the search. This phase is represented by arrow “IV” in Fig.
2. At the implementation level, we know that several phases
could be mixed together, but for explanation purposes we
decided to leave them separate.

On the following subsections, we provide detailed expla-
nations for phases I, II, III and IV of the framework, as well
as a few pre conditions and requirements that the database
should meet, in order for the algorithms to work properly.

Data template

In order for the aforementioned framework to work properly,
a few conditions are to be met. First, the information gath-
ered by the machines should constitute an event log. Process
mining algorithms require the minimal information of pro-
cess ids, and time dimension (start and ending time of each
activity) to be present on the log. For scheduling and sce-
nario construction purposes, we also need, for each event,
the names of the main product and its subpart that is being
processed. Also, the required quantity and the actual num-
ber of produced parts. Table 1 shows a log fragment of the
required information:

Lines 1 through 5 of Table 1 shows the events concerning
themanufacturing of productA, by production order 1 (PO1).
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(a) (b)

Fig. 1 Random keys on web of science search

Fig. 2 Phases of the approach

Table 1 Event log fragment

PO ID Prod. Part Qty. Produced Mach. Start End N mach.

PO1 A E 20 18 m1 01/01/2020 08:20 01/01/2020 08:28 m1E

PO1 A D 20 19 m2 01/01/2020 08:22 01/01/2020 08:43 m2D

PO1 A C 20 18 m3 01/01/2020 08:45 01/01/2020 08:50 m3C

PO1 A B 10 9 m3 01/01/2020 08:51 01/01/2020 09:10 m3B

PO1 A A 10 8 m5 01/01/2020 09:10 01/01/2020 09:10 m5A

PO2 A E 20 18 m1 02/01/2020 08:20 02/01/2020 08:28 m1E

PO2 A D 20 19 m2 02/01/2020 08:22 02/01/2020 08:43 m2D

PO2 A C 20 18 m3 02/01/2020 08:45 02/01/2020 08:50 m3C

PO2 A B 10 9 m4 02/01/2020 08:51 02/01/2020 09:10 m4B

PO2 A A 10 8 m5 02/01/2020 09:10 02/01/2020 09:10 m5A
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(a) (b)

Fig. 3 Phases of the approach

By the log, we see that A is composed of 4 sub-parts; B, C, D
and E. Not all the planned components (Qtty.) were produced
(Produced) for subpart E, an order was emitted for 20 parts
and only 18 were finished. Column “Mach.” contains the
machines that processed the items.

The second requirement to use the approach is themachin-
ery for each product; we assume that, for eachmanufacturing
stage (that is, each subpart component) there is a giving set of
machines available, consisting of a disjoint groupof anyother
part of the same product. Subparts of different products, how-
ever, do not need to have disjoint machinery groups. Table 1
has 2 PO for product A (PO1 and PO2), but their components
are processed on different machines, the product-tree of Fig.
3a contains all permissible machines (according to the log
of Table 1), for all components of product A. At each node,
themi represents the available machinery that the item (node
letter) could be processed on, arcs between nodes represent
dependencies, and their number the required quantity.

We see from Fig. 3a that component C can be processed
by machine set MC = {m3}, whereas component B on set
MB = {m4,m3}. As MC ∧ MB = {m3} �= {∅}, this con-
figuration is not permissible, as they make a non-disjoint
set. That machinery would yield a Petri net with unex-
pected behavior. So, in order to avoid that, a changing in the
database is required: each machine belonging to joint sets,
should be given another name (always mapping to the orig-
inal machine). This is easily accomplished by the following
procedure: first, filter all different products of the database.
For each component of the product, create a new columnwith
a machine that is a concatenation of the initial machine, and
the produced subpart. This new machine creation is depicted
on column “N mach.” of Table 1.

This procedure guarantees the creation of non-disjoint
machinery sets, but it could also happens that more than
the necessary machines are created; in Table 1, for exam-
ple, we would only use the new created machines m3B and
m3C , although, it would have no problems in using all of

Fig. 4 Product Petri net

them.Figure 3b shows the newproduct tree,with non-disjoint
machines.

At any time, the new created machines could be mapped
again to their original state. This transformation is important
to extract the Petri nets, so the input to the process mining
algorithm should have the column “N mach” as activities,
and not the original “Mach”. If those conditions are met, the
extraction of product trees from Petri nets can be applied, we
discuss the procedure on the following subsection.

I - Extracting dependency graph from Petri nets

As we mentioned, this first phase is designed to extract the
product dependency graph from Petri nets. First we provide
a definition of Petri nets, and their algebraic representation.

A Petri net can be defined as 4-tuple, Pn = (P, T, I, O)
(Murata 1989), (Peterson 1981) where:

1. P = {p1, p2, ..., pn} is a set of places,
2. T = {t1, t2, ..., tm} is a finite set of transitions
3. I:T → P is an input function
4. O:T → P is an output function

Petri nets are able to represent discrete event systems with
concurrency, a common characteristic of scheduling environ-
ments, where different product parts could be simultaneously
processed. Figure 4 displays a Petri net with those character-
istics:

The net of Fig. 4 represents the sequence through which a
multi-level product undergoes: each place represent a product
at some state (prior or after being processed), and transi-
tion are machines ((Zimmermann et al. 2001), (Saitou et al.
2002)). This specific product has a concurrency on machines
m1 and m2 and a synchronization the parts, performed by
machine m3C (showed on the first box of Fig. 4). Machines
m4 and m3B on the other hand, are representing a conflict
(or choice), where either one of them can be used to com-
plete the same product stage (second box). In this example,
the procedure described on “Data template” section is used:
that is, machine m3 can be used on 2 processes, but it was
duplicated into m3B and m3C .
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Fig. 5 Product structure from Petri net

From a Petri net, we are able to rebuild the multi-level
dependency structure from a product. For example, the Petri
net of Fig. 4 yields the dependency graph showed in Fig. 5.

Note that the Petri net provide the dependency graph,
along with the permissible machine sets, but it is not pos-
sible to derive processing times and quantities only with the
net, that would require the new discovered graph and the log
(that is explained on further sections). In order to apply the
algorithm that extracts the graph, we first need to transform
the Petri net on its algebric notation, which facilitates the
algorithmic development.

Besides the (P,T,I,O) definition, a Petri net can also be
represented in a matrix form. In this form, the input and
output functions are replaced by two matrices, Dp and Dm .
Each matrix ism rows (one for each transition) by n columns
(one for each place). The elements of thematrices are defined
as follow:

– dp[i, j] is the number of tokens that transition i send to
place j .

– dm[i, j], is the number of tokens that transition i con-
sumes from place j .

The two matrices, Dp and Dm (as plus and minus) for the
net of Fig. 4 are then:

Dm =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6 P7

m1 1 0 0 0 0 0 0
m2 0 1 0 0 0 0 0
m3C 0 0 1 1 0 0 0
m3B 0 0 0 0 1 0 0
m4 0 0 0 0 1 0 0
m5 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Dp =

⎛
⎜⎜⎜⎜⎜⎜⎝

P1 P2 P3 P4 P5 P6 P7

m1 0 0 1 0 0 0 0
m2 0 0 0 1 0 0 0
m3C 0 0 0 0 1 0 0
m3B 0 0 0 0 0 1 0
m4 0 0 0 0 0 1 0
m5 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

The input and output matrices from the Petri net are the nec-
essary inputs to our algorithm. A pseudo-code for the main
routine is depicted in Algorithm 1. Themain idea of the algo-
rithm is to perform a search on the Petri nets (by its matrices),
from backwards. That is necessary due to the product con-
ditions; as it has to “end” at some point (the final product is
the final place of the net), and as it follows a tree-structure,
the end would be then the root of the tree, which would be
the only possible place to start the search.

Algorithm 1: PetriNetTransform()
Data: Matrices Dm [][] and Dp[][], where each element

di j ∈ {0, 1}
Result: List L of n, where n is a triplet:

(P1, Lmachines = {}, P2)
1 L = {∅}; S = {∅}; n0 = (∅, {∅},∅);
2 n0.P1 = FindZeroColumnDminus(Dp);
3 S.add(n0);
4 while S �= ∅ do
5 ni = S.pop();
6 ni .M = FindMachinesDplus(ni .P1, Dp)

7 FindPlacesDminus(ni ,L, S, Dm)

8 RemoveFirst Places(L);
9 return L;

The output of the algorithm is the list of triplets L. The
elements of the triplet n are:

1. P1: Integer representing a place (column number, for
example, P1 = 3 is the same as the third column of matrix
Dm- P3).

2. M: Set of integers representing transitions/machines (row
number, for example, M = {1,3} represents M = {m1,
m3C}).

3. P2: Integer representing a place.

Each P1-P2 is an arc of the final dependency graph, and
the set M are the permissible machines for the respective P1.
This structure is then easily restored to an adjacency list, or
incidence matrix that represents the product tree. The list S
has the same structure of the final output L, but it is used to
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control the searched nodes of the Petri net. Line 1 of Algo-
rithm 1 initializes both lists, and a n element with null values.
The routine FindZeroColumnDplus() searches each col-
umn of matrix Dp, and returns the one where elements sums
up to zero. That indicates a place that serves as input for no
transition, that is, the final product, so the search starts at this
point.

Lines 4 through 7 performs the algorithm main loop: the
first triplet of S is removed (its P1 element is already filled),
and a search is conducted on FindMachinesDplus() and
FindPlacesDminus() routines.

The FindMachinesDplus() (Algorithm 2) is responsi-
ble to collect all machines permissible to P1 to be processed
on. That is conducted on each row of column P1 on matrix
Dp.

Algorithm 2: FindMachinesDplus(P1, Dp)
Data: integer P1, matrix Dp[][] where each element di j ∈ {0, 1}
Result: List M of integer, each one representing one machine

1 M = ∅;
2 for i = 1 to Dp.rows do
3 if Dp[i][P1] == 1 then
4 M .add(i);

5 return M ;

With the P1 and the list of machinesM the last stage of the
loop is to connect the dependency with its immediate descen-
dants (P2). That is achieved on FindPlacesDminus()
routine (3). In this routine, the list S has new elements added
and the final output list L also has its elements inserted.

Algorithm 3: FindPlacesDminus(n1, L, S, Dm)
Data: n, where n is a triplet: (P1, Lmachines = {}, P2), L and

S, lists of n, matrix Dm [][] where each element di j ∈ {0, 1}
1 m = n.M . f ront();
2 for j = 1 to Dm .columns do
3 if Dp[m][ j] == 1 then
4 ncurrent ← n;
5 ncurrent .P2 = j ;
6 L.add(ncurrent );
7 nnew = ( j,∅,∅);
8 S.add(nnew);

After the main loop of Algorithm 1, considering the illus-
trative Petri net of Fig. 4, the listL contains the following ele-
ments:L = {(7, {6}, 6), (6, {4, 5}, 5), (5, {3}, 3), (5, {3}, 4),
(4, {2}, 2), (3, {1}, 1), (1, {∅},∅), (2, {∅},∅)}

Which provide the arcs of the dependency graphs, and also
the two “beginnings” of the product.As thePetri net represent
its states as pre-processing (place before the transition) and
post processing (place after transition), at some point there

would be generated a surplus place that do not map directly
to some product part. The two last elements of the list L are
these places, both with the ∅ for two elements. The last phase
of the algorithm is to remove those places, that is done by
routine RemoveFirst Places() (line 8 of Algorithm 1). The
entire list is searched for ∅ values, and those elements are
simply removed.

The output becomes then:
L = {(7, {6}, 6), (6, {4, 5}, 5), (5, {3}, 3), (5, {3}, 4), (4,

{2}, 2), (3, {1}, 1)}
The list L is easily converted to an adjacency list or inci-

dence matrix. On the next section we provide details for the
calculations of subpart quantities.

II - Product quantities and labels

After the extraction of the product tree from the Petri nets,
as showed in “I - Extracting dependency graph from Petri
nets” section, the next step is to provide the labels of product
parts and their required quantities. FromPhase I, the product-
tree dependencies are linked by permissible machines, as
indicated in Fig. 5.

As mentioned in “Data template” section, for each prod-
uct, if there were shared machines among its subparts, there
should be a mapping to new machines. This process guar-
antees that each pair (component,machine) is unique, so the
labels of each place (the name of each node of the product
tree) can be gathered by replaying each trace. Considering
the product tree extracted on the last subsection, in the form
of list L, and after the mapping of the M list of integers to
the machine names (lines of matrix Dm), the list L becomes:

L = {(7, {m5}, 6), (6, {m3B ,m4}, 5), (5, {m3C }, 3),
(5, {m3C }, 4), (4, {m2}, 2), (3, {m1}, 1)}

Now, a simple trace replay is performed, and the infor-
mation is linked to the nodes through the machine mapping.
Replaying all events of the log presented in Table 1, the labels
attached to the machines of list L are:

L = {(7, { m5

A
}, 6), (6, { m3B,m4

B
}, 5), (5, { m3C

C
}, 3),

(5, { m3C

C
}, 4), (4, { m2

D
}, 2), (3, { m1

E
}, 1), }

This procedure enables the node labeling for the product
tree. Figure 6a shows the nodes with their product names.

In the same manner, all relevant information can be
attached to the respective node, like theorderedproduct quan-
tity, and the actual produced. On the next Section this same
procedure is used to gather the processing times, and con-
struct confidence intervals for the means.

Once the dependencies are know, the tree can be used
along with the log to gather the quantities required on each
subpart production. For each arc (p1, p2) of the tree, the
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(a) (b)

Fig. 6 Product quantities and labels

required quantity is given by the following formula (basically
a bill of material explosion):

Qtp2→p1 = Qtp2
Qtp1

(1)

Where Qtp2→p1 is the quantity required of product p2
to produce one unit of p1. Qtp2 and Qtp1 are the quantities
presented on log of components p1 and p2.

Figure 6b shows the calculation of Eq. 1 for arcs (A,B),
(B,C) and (C,D).

The last component of the tree is the processing times,
presented on the next subsection.

III - Time confidence interval and scheduling
scenarios

In this Section we describe how to collect the process-
ing times of the machines. Every production process has a
stochastic component describing their processing times. As
we are using process mining techniques, we are able to per-
form promptmachine knowledge extraction, which enable us
to use this stochastic behavior to improve scheduling results.

We propose the gathering of 3 processing time values for
each product, optimistic, realistic and pessimistic (to, tr , tp).
The method used to collect the values can be one of two; a
mean confidence interval or a bootstrap confidence interval;
the decision depends on the data. Figure 7 displays a decision
chart that guides on what method should be used.

Basically, the flowchart checks the assumptions that the
data should have, in order for the confidence interval to be
constructed. If the conditions are not met, the values are col-
lected by the bootstrap interval. The first decision concerns
the sample size (n), if it has more than 70 elements, we make
use of the central limit theory 1, and the confidence inter-

1 The central limit theorem states that the sum of n independent and
identically distributed random variables is approximately normally dis-

Fig. 7 Decision flow to collect time bounds

val can be applied. Otherwise, we check data normality by
applying a Shapiro-Wilk test (Shapiro and Wilk 1965), and
evaluate its p-value, under the null hypothesis H0 that the
sample was drawn from a normal distribution. If the p-value
is greater than .05 (α = .05), the normality condition is met,
and the confidence interval can be constructed, otherwise we
use the bootstrap interval.

Regardless of themethod used, we need to gather the sam-
ple of processing times for each machine. That is easily done
with the process-log and machine mapping explained in “II
- Product quantities and labels” section. In the same way,
a log replay is performed for each product tree, using all
traces available on the database for the product, but now the
attached information is their processing times.

The mean confidence intervals states that (1 - α)% of the
processing times would fall on the interval. The α value is
typically set to 5%. As we do not known the population mean
μ nor variance σ 2, the interval is constructed according to the
t-student distribution. The confidence interval for the sample
mean X with significance level α CI(X ,α) is then:

C I (X , γ ) = X ± tγ

√
S

n
(2)

Where X is the sample mean, tγ is the t-statistic where
P(−tc < t < tc) = 1 - α with n − 1 degrees of freedom. S is
the sample variance, given by:

S = 1

n − 1

(
n∑

i=1

x2i − nX
2

)
(3)

We use the values of the interval to construct the schedul-

ing scenarios: to = X − tγ

√
S

n
, tp = X + tγ

√
S

n
and tr = X

tributed (Montgomery 2017). At some cases this approximation is good
even for small n (n ≤ 10), whereas in some cases a large n is required
(n ≥ 100)
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Table 2 Data summary

Method

Collected value Bootstrap CI CI

lo X − δ∗
a X − tγ

√
S

n
lr X X

lp X + δ∗
b X + tγ

√
S

n

If the the assumptions to construct the parametric con-
fidence interval are not met, we construct the bootstrap
confidence interval (Efron 1992). The bootstrap confidence
interval is based on the resampling idea. The first step is to
create multiple samples of the dataset (with same size with
replacement). Each new resample has a mean value X

∗
. To

construct confidence interval, we need to know how much
the distribution of X varies around μ:

δ = X − μ (4)

The bootstrap principle states that we can approximate δ

by:

δ∗ = X
∗ − X (5)

The next step then is to compute all the δ∗ values of the
resamples, and then sort them in non-decreasing order. The
bootstrap confidence interval is then:

[X − δ∗
a, X + δ∗

b] (6)

Where a and b are percentiles of the collected δ∗ values;
they are the equivalent to α on the parametric confidence
interval. For example, suppose we had 20 sorted δ∗ values, a
bootstrap confidence interval of 90% would imply a = 5%
and b = 95%, so δ∗

a is collected as the first value of the
ordered δ∗s, since it is the 5 percentile.

Table 2 summarizes the gathering information for both
intervals:

Those values are to be attached at each node of the product
tree, Fig. 8 shows an example with attached values:

The rationale behind the different times are as follows:

1. Optimistic In an optimistic scenario, the processing times
are as low as possible, hence using the lower values of the
confidence intervals.

2. Realistic In an realistic scheduling scenario, the value
used is equivalent to the mean processing times. That
would yield the most historically “probable” processing
times.

3. Pessimistic As expected, in a pessimistic scenario, all
machines process their respective products using as long
a time as possible, that is, the upper value of the intervals

In thisway, industrialmanagers are better equipped to deal
with different types of clients and suppliers; when bargain-
ing a new client due date, managers could use the pessimistic
scenario of scheduling, which would hardly be extrapolated,
hence providing the client with a secure delivery date. On
the other hand, the manager may use the optimistic scenario
when dealing with suppliers; after optimizing the scheduling
for a given time period, the optimistic scenario would implic-
itly provide the early date for material consumption. Then
critical material could be planned and ordered accordingly,
mitigating the risk of production halt due to lack of mate-
rial. The different scenarios aims at minimizing a disruption
effect that may occur on the future, which is a concept often
encountered on predictive scheduling Yang et al. (2020).

At this point, all relevant information to perform the
scheduling is attached to the product tree, so a mapping to
the original machines can be done. Figure 8b shows the final
product tree: the original machine remapped (m3B and m3C

become m3), and for each machine the interval values for
scenario construction are depicted in green, yellow and red
colors.

Figure 9 depicts a possible scheduling output for the prod-
uct tree of Figure 8b, considering all scenarios and a client
due date set to period 10.

With the 3 scenarios at hand, an industrial manager is able
to make more accurate decisions. Considering the client due
date, we see from Fig. 9 that in 2 of 3 scenarios the due
date is not achieved (Fig. 9b and c), in the realistic scenario
there would be 2 days of delay, and 8 on the pessimistic. So
it would be a reasonable choice to contact the client for a
possible date postponement. Also, the manager has a better
bargaining power, knowing that in the worst case scenario, a
plausible due date would be at time period 18.

The scheduling engine should be robust enough to perform
fast optimizations, given that for each “normal” procedure,
the engine should be run 3 times, one for each scenario. In the
following subsectionweprovidewith an accelerationmethod
to decode scheduling solutions that are coded as random
keys. This codification can be used to severalmeta-heuristics.
We have implemented a genetic algorithm, although the GA
implementation details are not showed in this paper.

IV - Scheduling heuristic and bisection acceleration
method

In this Section we present the main components of the
scheduling solution representation scheme, as well as a new
method to speed the decoding solutions. The procedure is
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(a)
(b)

Fig. 8 Time interval product tree

(a)

(c)

(b)

Fig. 9 Scheduling scenarios

based on the bisection method (binary search) (Burden and
Faires 2004) for the root-finding problem. It is worth noting
that this method could be applied to any heuristic procedure
that handles the same coding scheme to perform its search.
In this paper we have implemented a genetic algorithm (GA)
based on Kim and Kim (1996).

One common characteristic of GAs is that they operate on
coding and solution spaces, as showed in Fig. 10.

The evolution takes place in the coding space, whereas
evaluation in the solution space. For a chromosome to be
evaluated (by some objective function), it first needs to be
decoded to a solution, and vice versa. How to encode and
decode solutions in genetic algorithms are then questions of
the utmost importance, and could determine the success or

Fig. 10 Coding and solution spaces

demise of the procedure. One critical issue of encoded solu-
tion regards their feasibility; there could be encoded solutions
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Fig. 11 Example product tree

that, when mapped to the solution space, become infeasible
and therefore needs repair. Also, there are encoded solutions
that has their feasibility guaranteed upon the mapping pro-
cedure.

There exist many forms of representing encoded solutions
(Cheng et al. 1996), in this paper we use the random-keys
representation. In this particular case, we follow the ideas
presented in Kim and Kim (1996) (although the authors do
not provide a generic algorithm for multi-level scheduling,
as they deal only with two level products). The decoded solu-
tion is always feasible, which requires a lot of computational
time; we propose an accelerated method for decode feasible
solutions, based on random keys (RK).

A RK chromosome representation, firstly proposed by
Bean (1994), is encoded as a vector with as many elements
as the components of the product tree. Each element consists
of two parts; an integer that represents the machine that will
process the component, and a fractional randompart∈ (0, 1),
serving as a sorted list determining the order of loading parts
in machines.We demonstrate the random key coding dynam-
ics using the product tree of Fig. 11, as it encompasses two
parallel structures and shared machines.

A possible RK codification for this tree is:

RK = [ 1.22
A

, 2.57
B

, 2.98
C

, 3.72
D

, 4.05
E

] (7)

Each letter above the vector elements are symbolizing the
respective sub-parts. Each fractional part is a random num-
ber between 0 and 1. Each integer part is a random number
among the permissible machine set of the specific part; for
instance, the permissible set for product A is MA = {1} (the
only possible random integer forA is 1), for C isMC = {2, 3}
(the random integer can be chosen only among 2 and 3). The
decoding process of some RK requires the product depen-
dency graph, demanded quantities and due date. The process
of loading parts tomachines is performed in a backward fash-
ion: starting from the due date, the final product is loaded,
then their first order components, and so on, until all products
are loaded or the schedule is unfeasible. In this case, the due

date has an increase of 1 unit, and the decoding is performed
again, this process is repeated until a feasible schedule is
decoded. An example of the decoding process with multi-
products is explained in details on Appendix A.

The decoding process exemplified on Appendix A has
generated a feasible solution on the its first attempt, which
does not always happens. If the product due date was set
to time period 6 instead of 9, all schedule were to be push
back 3 time units. That would result in sub parts D and E
starting on period -1, which is clearly unfeasible. If that
were the case, the next step would be to increase the due
date from 6 to 7 and start the decoding again, this would be
repeated until the first feasible schedule is obtained. This is
the most time consuming routine of the algorithm, we pro-
pose a speed-up procedure for the feasible decoding, based
on the bisection method. The procedure relies on two main
concepts, described below; the due date upper and lower
bounds.

Definition 1 Any timeperiod Tu , forwhich,when considered
as a RK due date, is guaranteed to provide a feasible schedule
when decoded, is called a due date upper bound.

Definition 2 Any time period Tl , for which, when considered
as a RK due date, is guaranteed to provide an unfeasible
schedule when decoded, is called a due date lower bound.

The bisection method we propose performs a search for
a feasible decoding on the interval between Tl and Tu , with-
out checking every time period. The problem of finding the
Tl is very relevant, since the client initial due date may not
be possible on the best case scenario, if this case is spotted
prior to the algorithm execution, it could save computational
efforts.

We derive the Tl based on the Material Requirement
Planning (MRPI). The seminal work of Orlicki (1975) intro-
duces the MRPI, a method to calculate the components
necessity over a given time period (considering precedence
constraints). TheMRPI does not consider any resource infor-
mation (machinery), so in away, it can be seen as a scheduling
with infinite capacity. In our case, that can be seen as; when-
ever a parallel processing is permissible according to the
product tree, there is a machine available to perform it. That
is the best case scenario to schedule the product, if one time
unit is removed from the due date, it becomes infeasible, and
therefore a due date lower bound Tl .

The Tu , on the other hand, is derived considering what
would be theworst case scenario; if there is no parallel activi-
ties at all (represented byonly onemachine that has to process
all the sub parts). All product parts being processed on one
machine is the worst case scenario, so it is guaranteed to be
feasible, and therefore a due date upper bound Tu .

Now, with the founded bounds it is possible to use the
bisectionmethod to accelerate the search, Algorithm 4 shows
the main routine:
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Algorithm 4: FindDecodeBisection()
Data: Integers Tl , Tu , Tc and �, vector RK of reals, product

dependency graph G
Result: Integer t of first feasible due date for the product

scheduling
1 if Tl > Tc then
2 a = Tl

3 else
4 a = Tc

5 b = Tu
6 while (b − a) ≥ � do

7 t =
⌊b − a

2

⌋
;

8 flag = DecodeRandomKey(p,G, RK );
9 if flag == true then

10 b = p;

11 else
12 a = t;

13 flag = false;
14 while flag == false do
15 flag = DecodeRandomKey(p,G, RK );
16 t ++;

17 return t;

Lines 1 through 5 of Algorithm 4 sets the interval limits,
in this case, there should be a verification of the Tl , if it is
smaller than the client due date (Tc), than it is not used on
the interval. Lines 6 through 12 perform the binary search; at
each iteration of the while loop, the interval is narrowed to its
half, that is performed until the interval is ≤ � (a provided).
After the interval has been narrowed to �, an incremental
search is performed until the first feasible decoding is made
(lines 13–16).

The usual decoding scheme, presented in Bean (1994)
does not providewith a time interval, as it does not have lower
and upper bounds. Considering that our bounds were to be
used, and that n = Tu−Tl , the decoding of Bean (1994) has a
complexity of O(n). If our proposed binary search is applied,
considering the same bounds, the complexity becomes then
O(log n).When used on a search heuristic, as aGA,where an
enormous amount of decoding is to be made, the complexity
reduction proposed produces a significant time decrease on
the overall procedure. That reduction make it manageable
to run the algorithm 3 times for each scheduling (in order
to produce the multiple scenarios, presented in “III - Time
condence interval and scheduling scenarios” subsection). On
the next sectionwe provide some computational experiments
on the bisection decoding algorithm.

Computational results

In this section we present computational results considering
the random keys bisection method. As the decoding needs

to be performed a number of times (depending on the meta-
heuristic applied), we studied the total time behavior of the
decoding when applied to a genetic algorithm. We chose the
GAas it hasmany parameters that influences the total number
of decoded solutions, and an overview of time differences in
this complex search space may provide a good estimate of
time savings for other meta-heuristic approaches.

Since we are interested in quantify the speed performance
of algorithms, we did not provide a comparison of scheduling
objective functions, as we use the same GA for both random
keys decoding schemes; which implies that the scheduling
outputs were the same, differing only by their required com-
putational time.

We have tested a GA on the product tree of Fig. 12. The
tree has 87 components in total, and a maximum of 12 sub-
part levels. The arcs have no quantity labels attached due
to the picture space, but every quantity and processing time
was set to 1 unit. Our scheduling comparison was conducted
under the following demand: 10 units of product 0 and 10
units of product 6. Besides the GA parameters, one partic-
ularly interesting parameter is the due date of the demand;
as the bisection decoding algorithm speeds up the process
when the first decoding is not feasible. If the due date is far
enough on the planning horizon as to be feasible on the first
try, both decoding schemes are expected to have the same
performance.

We have compared the results 2 of those demands for
different due dates, and, from the GA algorithm we tested
different values of the population size and total generations.
The plots of Fig. 13 show the results.

On the plot, “NB” stands for Not Bisection where “B”
stands for Bisection. The x axis varies the due date while the
y axis is the total processing time in seconds. We see from
the plot that for every set of GA parameters, as the delivery
due date approaches 0, the NB time grows abruptly. That
behavior is expected, as we know that a feasible decoding is
more likely to be found on the first attempt, when the due
date is far on the planning horizon.

Our decoding has a time increase practically constant
while due dates approach 0. The population size does not
appear to affect the decoding times, however, we note that
when the population size grows, decoding times seems to
follow the trend.

With this increase, we conclude that it is not viable to
use the usual decoding, specially with more complex client
demands and a manufacturing landscape, that most likely
would already have loaded sub-parts being processed on
machines, by the time of new schedules optimization.

2 Computational tests were implemented in the C++ programming lan-
guage and ran on a Ubuntu 18.04.4 server machine, with 1gb of RAM
memory
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Fig. 12 Test product tree

Conclusion

In this Section we conclude the paper, first by discussing
some know limitations of the proposedmethod and our future
research works. The last subsection is dedicated the implica-
tions and final remarks.

Drawbacks and future works

One known limitation of the work regards the log template.
As presented in “Data template” section, the event log should
have a predefined form, in a way that process-discovery
algorithms like alpha-miner could be applied. Our Petri net
mining algorithm works for nets without hidden-transitions,
that is, a systemwith at least one transition that is not directly
representing an activity on the real process.

If that is the case, our Petri net mining algorithm would
insert sub-parts on the product-tree that does not exist in
reality. The second point is the scope of the binary search,
proposed in “IV - Scheduling heuristic and bisection accel-
eration method” section. The method is applicable to any
meta-heuristic that would perform the scheduling, but the
solution codification scheme should be with random keys.

This work enables an almost effortless scheduling engine
output. By using only a machinery log, all relevant informa-
tion can be gathered and the multiple scenarios evaluated.
For our future research work, we aim at using this frame-
work on a pilot SME which does not yet have a scheduling
engine. For that, we would use the newly proposed Petri net
extraction algorithm and the bisection decoding method.

As the bisection scheme applies to any meta-heuristic
framework that uses random keys as its coding scheme, we
would compare 3 meta-heuristics; tabu search, simulated
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Fig. 13 Result plots

annealing and the genetic algorithm. Also a refined version
of the scenarios would be to use statistical methods to predict
the processing times, as suggested by Sobaszek et al. (2019).

Implication and final remarks

In this paper we have proposed an integration of the schedul-
ing of multi-level products with machine data gathered on
the production floor. This bridge was supported by process-
mining techniques, which are able to promptly extract
process models from event data, and to perform a series of
analytical conjectures, like simulation-based analysis, rec-
ommendation services and process conformance checking.

The process mining tools are adequate for SMEs to incor-
porate, as the learning curve to use them is very accentuated
and there are high quality open source available software that
can be integrated into an existing information systems.

As stated by Moeuf et al. (2018), industry 4.0 tools are
easily implemented by SMEs, as it decentralizes informa-
tion. In this way, the collection of data are not a problem for
these companies. Our method uses process mining then, to
extract models from these data in the form of Petri nets, a
well suited language for computation, as they have a sound
mathematical background and can be expressed in algebraic
matrices forms.With the Petri nets describing the production
floor processes, alongwith the event log, we propose an algo-
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Fig. 14 Random key decoding example product A

rithm that extract the multi-level product tree (dependency
graph) for each product, as well as the relevant information
to perform the scheduling.

These information consist of; quantities of each sub-part
on the tree, the set of permissible machines and the process-
ing times of products on each machine. In order to deal with
the stochastic behavior of the manufacturing environment,
we propose the collection of 3 values by the construction of
time intervals for the mean processing times, and an associa-
tion of different scenarios for each value; optimistic, realistic
and pessimistic.

When the scheduling is performed, production managers
and practitioners would have 3 possible scenarios at hand,
instead of just the one, and according to different client or
supplier needs, a different production plan could be consid-
ered. In order to perform 3 different schedule outputs for
each manager input, the optimization engine should be fast

enough as to not compromise time restrictions; we then pro-
vide an acceleration method to decode solutions based on
random-keys. This representation is a common choice for
meta-heuristic scheduling algorithms, but not yet well stud-
ied for the multi-product type.We propose two bounds based
on the product tree, and a procedure that reduces the complex-
ity of the usual decoding, based on the bisectionmethod. This
method has reduced the complexity of the classical decoding
from O(n) to O(log n).

As an implication of our work, SMEs that does not yet
posses a scheduling engine are now able to build one from
scratch, with little efforts regarding systems and databases
integration; by only using the log generated by machines,
they are able, through the use of process mining, to perform
scheduling with multiple scenarios, giving production man-
agers a response answer for different customer demands and
supplier restrictions.
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Fig. 15 Random key decoding example product C

(a) (b)

Fig. 16 Due dates lower and upper bounds

The main goal of this study is to provide a framework that
facilitates complex optimization decision, as the multi-level
structure, for SMEs, on a simplifiedway, that does not require
big and expansive software solutions, as commercial ERPs
often does. Our framework incorporates machinery data into
a process intelligence view, resulting in concrete optimiza-
tion solutions for managers and practitioners.

Funding This work was supported by CAPES (Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior).

A Appendix: Random key decoding example

In this Appendix we show an example of the RK decod-
ing process. As expected, in a production scheduling, there
may exist more than one product that needs to be allocated
on machines, therefore, we build a decoding example for 2
products, on a set of machines that has already some parts
being processed.

As we are decoding 2 products, there must exist 2 RKs,
one for each product. It is important to note that the order
of decoding of the RK may change the schedules; we start
by decoding products with earlier due-dates. In this case, as
both products are due to time period 9, we choose randomly
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between then. The RKs for the example are:

RKA = [ 1.22
A

, 2.57
B

, 2.98
C

, 3.72
D

, 4.05
E

]

RKC = [ 0.00
A

, 0.00
B

, 3.20
C

, 4.05
D

, 4.30
E

]

Note that the values for products A, B and C were set
to 0 on RKC , as they are not used, but for implementations
purposes we choose to have the RKs as a square matrix.
Assuming a demand of 1 unit of product A (of Fig. 11) and
also 1 unit of product C. The delivery deadline for both prod-
ucts is on time period 9, and there is one remaining part
already scheduled on machine m1 on time period 8.

As mentioned, the decoding is carried out on a sequential
manner. Figure 14 shows the decoding process of product A
and Fig. 15 of product C.

The process starts with product A (following the product
tree), to be processed on machine 1 starting on time period 8.
Note that here, only the integer part of the RKwas used, since
there is no decision (the only part that can be loaded, accord-
ing to the precedence relations, is A). After A is scheduled
on machine m1, both sub parts B and C can be loaded (14d,
14e, 14f), sorting the fractional part of both RK elements,
we see that B ≤ C (0.57 ≤ 0.98), so the first part loaded is B
and then C (14g, 14h, 14i). The two sub parts are loaded in
machinem2, according to the integer part of the RK. Finally,
after C is scheduled, both D and E can be chosen, similarly
to the last step, the sorting of the fractional parts dictates that
E is loaded (14j, 14k, 14l) before D (14m, 14n, 14o).

Now, the same process is applied to RKC on Fig. 15; the
first allocated part is C, using only the integer part of the key
(15a, 15b, 15c). To decide what is the next loaded part, we
sort the fractional part regarding subparts D and E. We see
that D ≤ E (0.05 ≤ 0.30), so the first part loaded is D (15d,
15e, 15f) and then E (15g, 15h, 15i)

The next appendix demonstrate how to perform the upper
and lower bounds.

B Appendix: Due dates lower and upper
bounds

In this Section we perform the lower an upper bounds of
product A (the decoding process depicted in Fig. 14) In Fig.
16 we present the Tl and Tu for the product of Fig. 11.

Note that, when calculating the Tl in Fig. 16a, it is not
considered only the permissible set of machines, instead, all
products are allowed to be processed on all machines (and
there may exist infinite machines). That yield a Tl = 4 (MRP
calculations - 1), which is clearly infeasible, since the pro-
duction should start on period 0. The Tu , on the other hand
(Fig. 16b) is calculated as if only one machine were avail-

able, and stating from the last period with loaded parts, in
this case, there is a loaded part on period 8, which yield a
Tu = 18.

If the client due date for the product were to be on time
period 2, itwould be awaste of computations trying to decode
the solution starting from that point; as it is now know by the
Tl = 4, on the best case scenario, the first feasible decoding
was due to period5. So, only byknowingapriori theTl would
save at least 4 unnecessary random key decoding. Also, there
is no need to try to decode the solution on a period further than
Tu , as it is certainly feasible, and the best decoding should
be before it.

With this informationwe infer that the first feasible decod-
ing is not before the Tl and also not after Tu .
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